

Graphing Analysis

How do graphs help us interpret data?

Graphing Analysis

- An integral part of understanding data is being able to construct and interpret graphs
- A picture-like representation makes data easier to see a trend or pattern that can be used to extrapolate data and predict an event

Graphing Analysis

- Extrapolate - to infer or estimate by extending or projecting known information

Graphing Analysis

- Dependent Variable - the variable that is measured and affected in an experiment
- Independent Variable - the variable that stands alone and isn't changed by other factors

Graphing Analysis

Graphing Analysis

- Direct Relationship - when the x-axis and y-axis increase

Graphing Analysis

- Inverse Relationship - when the x-axis increases and the y-axis decreases

Graphing Analysis

- Cyclic Change - a repeating pattern that occurs over and over again

Graphing Analysis

- Rate of Change - the speed at which a variable changes over a specific period of time

$$
\text { Rate of Change }=\frac{\text { change in value }}{\text { time }}
$$

Graphing Analysis

* Earth Science Reference Tables [E.S.R.T.]
Eccentricity $=\frac{\text { distance between foci }}{\text { length of major axis }}$
Gradient $=\frac{\text { change in field value }}{\text { distance }}$
Rate of change $=\frac{\text { change in value }}{\text { time }}$
Density $=\frac{\text { mass }}{\text { volume }}$

Graphing Analysis

Rate of Change $=\frac{\text { change in value }}{\text { time }}$

